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Olefin transition-metal complexes have been studied extensively
as important reactive intermediates in various catalytic reactions,
and their structures and bonding nature are well understood on the
basis of the DewarChatt-Duncanson modeél.In contrast, very
few studies have been reported on the synthesis, structure, and
reactions of the silicon congeners of olefin complexes, transition-
metal complexes af?-disilene$—® and?-silaetheneg.We herein
report the synthesis and unique isomerization of iron complexes
of (E)- and ©)-1,2-dichlorodisileneslE and1Z, respectively, which
constitute not only the first disilene complexes wi}Z-isomerism
but also the first complexes with halogen-substituted disilene rigyre 1. Molecular structure ofZ)-disilene complexiZ determined by
ligands® X-ray crystallography (30% thermal probability ellipsoid). Hydrogen atoms

Disilene iron complexedE and 1Z were synthesized by the ?fe gﬂ;itzte&f;;f g'a:ite}/is_gilicztgg ;)ijsdilesnggsz ;é%%ndsbig?lagglglz(deg)i
reaction of the corresponding 2,2,3,3-tetrach|orotetrasnmwﬂh (7e),_ Sliz—blz 2_(0%’49(6)1 Sigsu_(éil I1oel_oo(3), Si(z)’Sill—Si3 153.42-
an excess amount of,ke(CO)° in DME at room temperature for (3), Cl1-Si1—Si2 109.00(3).

2 days (eq 1). Separation by flash column chromatography and then
recrystallization afforded purgéE and1Z as yellow crystals in 28 Chart 1

and 9% yields, respectivel. SiH, SiMe,
S Cl Si~w Gl
cl cl (CO)Fe (CO)Fe__ |
Rasi—Si—Sli—SiFia exce;sMKéte:[CO)“ \S|i\TSiH3 \Si\fSiMes
cl cl cl c
2 3E/3Z 4E/4Z
R3Si = +Bu,MeSi
SiRg SR, reaction times between 4 (45% conversion) and 12 h (88%
Sii=cl Si’:-m conversion), the isomer ratitiZ/1E changed from 10 to 5.0, while
(CO)4Fei | +  (CO) 4Fei | o) the total yield ofLE and1Z was almost constant (7¥6% yields).
Si=SiR, Si—~cql The results indicate that the reaction gives preferdidyat the
cl 'SiRg initial stage butlZ isomerizes slowly to more stable isontHE.
1E, 28% yield 12, 9% yield A kinetic study of the isomerization fronlZ to 1E was
performed using pur&Z (eq 2) in detail in THFdg and benzene-
Disilene complexed E and1Z were characterized biH, *C, ds. In THF-dg, the isomerization obeyed the first-order kinetics
and 2°Si NMR spectroscopies and X-ray crystallographythe between 296 and 323 K; the rate constda) (vas 3.34x 104
molecular structure ofZ is shown in Figure 1. ComplexekE s at 323 K and the activation enthalppld*) and activation

and 1Z have €)- and @)-1,2-dichlorodisilenes ag?*ligands, entropy AS) were determined to be 20.2 kcal mband—7.4 cal
respectively, and adopt approximate octahedral geometry aroundmg|-1 K-1, respectively. The isomerization was very slow in
the iron center. The averaged distance between iron and silicon inpenzeneds with k; = 4.66 x 107 51 at 323 K.

1Z is 2.436(9) A, which is longer than the-SFe distances in the

reported silyk-iron complexes (2.1972.422 A)12 The Sit-Si2 A kg

bond distance is 2.2726(7) A, which-g0.1 A longer than that of 12 THF-dg 1E )
the reported)-1,2-dichlorodisilene (2.163(4) Aput shorter than

those of the usual SiSi single bonds (2.3352.697 A)13 SincelZ was not detected in théd NMR spectrum at the end

The extent of the pyramidalization at Sil and Si2 is also of the isomerization]1E should be>3 kcal moi* more stable than
characteristic in disilene compleXZ. The substituents of the  1Z. Theoretical calculations for model iremisilene complexes
disilene ligand are significantly bent away from the iron; the bent 3E/3Z and 4E/4Z (Chart 1) at the DFT/B3LYP lev# showed
angle defined as an angle between -€8i1-Si3 plane and the that 4E is 1.5 kcal mot? more stable thadZ, while 3E is 0.49

plane perpendicular to the F&i1—Si2 plane in1Z is ~30°. On kcal mol less stable thaBZ, suggesting that the relative stability
the basis of the structural parametetg, is characterized as a is affected by the steric bulkiness of the silyl substituents. The
metallacyclopropane rather than a disileneomplex!* A similar relative stability estimated fatE/1Z would be reasonable on this
metallacyclopropane structure was observedliei! basis.

When the reaction d? with K,Fe(CO), in DME was monitored A mechanism involving silyleneiron complex5 as a key

by IH NMR spectroscopy, the complete consumption of the starting intermediate is proposed for the preferable formatiototiuring
tetrasilane2 was observed at the reaction time of 22 h. During the the synthetic reaction (eq 1) as shown in Scheme 1. In silylene
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complex5, S-chlorine migration may take place from conformation

5 or 5" having coplanar geometry between the migrating chlorine

atom and a p-type orbital of a-silicon atom. The dyotropic
rearrangement &' to 1Z would be sterically more favorable than

that of 5" to 1E, because the severe steric repulsion between a

trialkylsilyl group and Fe(CQ)group is caused during the latter

rearrangement. A straightforward mechanism involving the forma-
tion of the corresponding 1,2,2-trichlorodisilanyliron anionic com-

plex 6 followed by the nucleophilic attack of the anionic iron to

the S-silicon atom cannot explain the observed diastereoselectivity

in the synthetic reaction.

In accord with the above mechanism, it has been reported that

the reaction of Nge(CO) with bis(tert-butoxy)dichlorosilane gives
the corresponding silylergéron complex coordinated by tetrahy-
drofurari® and that the reaction of Nae(CO) with 1,2-dichlo-

rotetramethyldisilane afforded the corresponding 2-chlorodisilanyl-
iron anionic complex instead of the corresponding ferradisilacyclo-

propanée-’ Since silylene-iron complex5 can be stabilized by

complexation to a Lewis base such as THF and DME, the

isomerization of5 to 1Z/1E would be accelerated in THF.
While the reverse reaction diZ to 5' followed by the rotation

to 5" and then the dyotropic rearrangement would lead to the

thermodynamically favorable isometE, some other possible
mechanisms emerge for tAeto-E isomerization. The isomerization
may occur (1) during the dissociatierassociation equilibrium
between the corresponding disilene and Fe(&)2) during the
removal of one CO fromlZ and then Si-Si bond cleavage forming
the corresponding bis-silylene complex followed by the reverse Si
Si bond formation, and (3) during the heterolytic+& bond

cleavage forming the corresponding zwitterionic intermediate and
then recombination. However, preliminary theoretical calculations

have shown that any of the reactions3.is unlikely®
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